If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-148=0
a = 1; b = 10; c = -148;
Δ = b2-4ac
Δ = 102-4·1·(-148)
Δ = 692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{692}=\sqrt{4*173}=\sqrt{4}*\sqrt{173}=2\sqrt{173}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{173}}{2*1}=\frac{-10-2\sqrt{173}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{173}}{2*1}=\frac{-10+2\sqrt{173}}{2} $
| 3=9-v | | 129+2x=360 | | (3x+4)+(2x-1)=0 | | 4.4c=198 | | (1/a)^2=4 | | 54-2w^2-3w=0 | | 129/15x12=151.2 | | -2w^2-3w+54=0 | | (2x+5)°+75=180 | | 50-3x=-10 | | 1/a^2=4 | | 5b=8b-3b | | 3k=40 | | C(-10)=6-c(5) | | 3x-11=8x-9 | | 3(x+4)+6(x+4)=54 | | 4x-2=1x+2 | | 5(y-3)=y-1 | | -24=5(x-2)-7x | | 3+8x=4 | | 52+68+x=180 | | 13x-4=-11 | | 4(x^2-20x+100)=0 | | -5s=6-s | | 119+2h=1013 | | (21/7)(4=a)-12= | | 270+110+80+x=360 | | 3(x-6)=42÷14 | | 1.5xX=4.5 | | 42=2/7y | | 5x-135=1 | | 3/7=33x |